If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-8x-94=0
a = 16; b = -8; c = -94;
Δ = b2-4ac
Δ = -82-4·16·(-94)
Δ = 6080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6080}=\sqrt{64*95}=\sqrt{64}*\sqrt{95}=8\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{95}}{2*16}=\frac{8-8\sqrt{95}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{95}}{2*16}=\frac{8+8\sqrt{95}}{32} $
| 200m-75m+62,725=65650-200m | | −8x−14=7(−2−4x)+4x | | 5h+10=4h+h+15 | | (-6x-9)=-5 | | 15.3+1h=1.2-1h | | f+12=-1 | | s-1=34 | | 16+k=13 | | 16x/2*10=0 | | p+0=12 | | 16x/2*10=x | | 6h−1=-3 | | 4c-12=-5c+51 | | 8x-4-12x-3=180 | | k6=1518 | | c-3/7=2/3 | | 12+6a+8=40 | | m-48=12 | | v+17=19 | | 40x+16x*1.5=900 | | 3.5y=9.1 | | 9x-10+5x-20=180 | | -45y=810 | | 6r-19=17+2r | | 40x+1.5x=900 | | x+86=-6 | | 7/6+8t=13/6 | | 5(9g+1)= | | 4d+7=2d=7 | | 0.12(x+1000)=5760 | | m-25=50 | | c÷6=7 |